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The prevalence of apparently first-order kinetics of reactant disappearance in
complex systems with many possible reaction pathways is usually attributed to the
dominance of a single rate limiting step. Here, we investigate another possible expla-
nation: that apparently first-order kinetics might arise because the aggregate behav-
ior of many processes, with varying order of reaction and rate constant, approaches a
“central limit” that is indistinguishable from first-order behavior. This hypothesis was
investigated by simulating systems of increasing complexity and deriving relationships
between the apparent reaction order of such systems and various measures of their
complexity. Transformation of a chemical species by parallel irreversible reactions that
are zero-, first-, or second-order is found to converge to a central limit as the number
of parallel reactions becomes large. When all three reaction orders are represented, on
average, in equal proportions, this central limit is experimentally indistinguishable from
first-order. A measure of apparent reaction order was used to investigate the nature of
the convergence both stochastically and by deriving theoretical limits. The range of sys-
tems that exhibit a central limit that is approximately first-order is found to be broad.
First-order like behavior is also found to be favored when the distribution of mate-
rial among the parallel processes (due to differences in rate constants for the individ-
ual reactions) is more complex. Our results show that a first-order central limit exists
for the kinetics of chemical systems and that the variable controlling the convergence
is the physical complexity of reaction systems.
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1. Introduction

A first-order rate equation is often used to model the chemical kinetics of
reactions that involve complex pathways and multiple mechanisms. The results
of such modeling are often quite satisfactory even though theoretical consider-
ations would suggest a more complicated rate law. Common explanations of this
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phenomenon include: (i) the first-order model is applied over a small extent of
reaction, in which case, many rate laws will adequately describe the data, (ii) the
data contain noise causing any fine structure to be obscured and deviation from
the first-order model to be attributed to random measurement errors rather than
model failure, and (iii) the observed kinetics reflect a rate limiting step that is
first-order. It is the purpose of this work to investigate another possible expla-
nation: that multiple processes (which are not necessarily first-order) may com-
bine to produce kinetic behavior that is indistinguishable from first-order and
that such combinations are more likely to exist when reactions occur in a com-
plex environment.

This hypothesis may be viewed as a chemical kinetics analog to the central
limit theorem of statistics. The central limit theorem states that, when scaled prop-
erly, a linear combination of random variables approaches a normal distribution
as the number of random variables becomes large [1]. Some familiar implications
of the central limit theorem include (i) the justification for assuming that most
measurement errors are normally distributed and (ii) the result that sufficiently
large stochastic systems obey a Fokker–Planck equation [2] and, in the case of
chemical kinetics, a reaction rate equation [3]. Our hypothesis, then, is that there is
also a central limit effect in the reaction order of chemical kinetics where the cen-
tral limit is first-order behavior and the controlling variable is system complexity.

In a general sense, it seems that the notion of this central limit effect is
widely held, but we have found no evidence that it has been systematically inves-
tigated. Our interest in the hypothesis arose from consideration of contaminant
degradation kinetics in complex environmental media such as soils and sedi-
ments, but we expect that this investigation will have relevance in other contexts
such as chemical engineering of bioreactors, catalysis on heterogeneous surfaces,
radical reactions in plasmas and flames, atmospheric chemistry, etc.

2. Methods

We have investigated the nature and validity of our conjecture by exam-
ining a range of specific kinetic systems for the type of behavior hypothesized.
This approach involves four elements: (i) generation of a variety of rate laws,
(ii) solution of the rate laws, (iii) assessment of the degree of complexity of the
corresponding reaction system, and (iv) assessment of the apparent order of the
resulting disappearance curve.

2.1. Generation of rate laws

We selected parallel irreversible reactions as our test case because it is the
simplest possible system that contains the features employed in formulating our
conjecture. Considering the simplest case allows us to clearly explain the details
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of the conjecture and allows us to easily develop the necessary analyses and
interpret the results. We generated rate laws for an arbitrary number of parallel
irreversible reactions in the form:

dA

dt
= −

Nrxns∑

i=1

ki · Ami (1)

with the initial condition:

A (0) = A0, (2)

where A denotes concentration (or activity) of the reacting chemical species,
Nrxns denotes the number of parallel reactions, ki denotes the rate constant for
the ith reaction, and mi denotes the reaction order for the ith reaction.

A variety of rate laws may be obtained from equation (1) by employing var-
ious selection criteria for Nrxns, the values of ki , and the values of mi . We expect
complexity of the system to increase with Nrxns, so we varied Nrxns from 1 to 50.
We would like to interpret each reaction as an elementary reaction step, so we
required that the value of each mi be 0, 1, or 2 under the presumption that third-
order and higher-order reaction steps are prohibitively unlikely. We selected the
values of mi stochastically when we wished to examine an ensemble of like reac-
tion systems and combinatorially when we wished to examine all possible com-
binations of reaction orders for a given Nrxns. P(mi = x) denotes the probability
that mi = x and nx denotes the number of reactions with mi = x. Note that
P(mi = 0) + P(mi = 1) + P(mi = 2) = 1 and n0 + n1 + n2 = Nrxns.

We selected rate constants by first selecting a characteristic value, ξi , and
then scaling ξi according to:

ki =






ξi · 1
Nrxns · 〈ξ〉 · A0 · 7

8 · ln(8)
, mi = 0,

ξi · 1
Nrxns · 〈ξ〉 , mi = 1,

ξi · 1
Nrxns · 〈ξ〉 · 1

A0
· 7

ln(8)
, mi = 2,

(3)

where 〈ξ〉 denotes the average value of the distribution from which each ξi is
selected. Equation 3 contains three scaling factors: 1/(Nrxns · 〈ξ〉), A

(1−mi)

0 , and
a third reaction order dependent factor. The scaling factor, 1/(Nrxns · 〈ξ〉), makes
equation (1) independent of Nrxns and 〈ξ〉. This scaling is equivalent to scaling
time by Nrxns · 〈ξ〉. The scaling factor, A

(1−mi)

0 (equals 1 for mi = 1), causes A/A0

to be independent of A0.
Rate constants for processes of different reaction order are dimensionally

inconsistent and, therefore, cannot be compared directly. The third scaling factor
is needed to force reactions to contribute to the overall system development in
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proportion to their value of ξi , regardless of reaction order. We derived the val-
ues for this factor by requiring a zero-order only system and a second-order only
system to proceed to an arbitrary concentration endpoint in the same amount
of time as a first-order only system. The endpoint used was three half-lives, the
selection of which is discussed later. In the case of stochastic selection of reac-
tion orders, the ξi for each reaction was selected randomly from a normal dis-
tribution which was truncated at zero. In the case of combinatorial selection of
reaction orders, all ξi ’s were set equal to 〈ξ〉.

The manner of rate constant generation described above gives rise to groups
of reaction systems with the same value of Nrxns, mi selection criteria, and ξi

selection criteria. In the discussion that follows, we will call these groups ensem-
bles of like reaction systems. An ensemble member, then, is an individual reac-
tion system and the ensemble size is the number of reaction systems belonging
to a particular ensemble.

2.2. Solutions to the rate laws

Given the restrictions placed on mi , an analytical solution to equation (1)
may be obtained by direct integration. To aid integration, we re-write equation
(1) as

dA

dt
= −a · A2 − b · A − c, (4)

where

a =
∑

{i|mi=2}
ki, (5)

b =
∑

{i|mi=1}
ki, (6)

c =
∑

{i|mi=0}
ki. (7)

Integration and application of the initial condition (equation 2) yields:

A =





− b

2·a +
√

b2−4·a·c
2·a ·

(√
b2−4·a·c+(b+2·a·A0)

)
/

(√
b2−4·a·c−(b+2·a·A0)

)
·e

√
b2−4·a·c·t−1

(√
b2−4·a·c+(b+2·a·A0)

)
/

(√
b2−4·a·c−(b+2·a·A0)

)
·e

√
b2−4·a·c·t +1

, t < tA=0,

0, t � tA=0.

(8)

This solution, while general, contains a number of cases that result in singular-
ities when calculating disappearance curves. In these cases the calculations were
simplified by taking limits and/or employing Euler’s formula. For example, if a =
c = 0, then equation (8) takes on an indeterminate form and must be calculated
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by taking the limit (using L’Hospital’s rule) as a and c approach zero. The result-
ing equation, in this case, is the solution to a first-order rate law with rate con-
stant equal to b.

2.3. Quantification of complexity

In selecting an approach to quantify complexity, we considered two gen-
erally accepted features of complex systems: (i) complex systems are comprised
of many interrelated parts, and (ii) complex systems exhibit both ordered and
random behavior [4–8]. A number of complexity metrics have been proposed
[7,9–13], but application of these metrics to specific systems can be nontrivial
and the interpretation of these metrics is still an area of research. Our prelim-
inary efforts using the Shiner metric [13] produced results consistent with the
findings reported below. However, we found that two lower level quantities, the
number of reactions, Nrxns, and the pathway entropy (defined later), gave compa-
rable results for the systems considered here. These surrogate complexity metrics
proved to be preferable for present purposes due to ease of implementation and
interpretation.

Complex systems are comprised of many interrelated parts. For the systems
that we have considered, Nrxns is the relevant measure of the number of parts.
Because we are not changing the way in which the reactions are related, it is
intuitive to use Nrxns as a measure of complexity. This is consistent with the
Shiner metric, which we found to be dominated by ln(Nrxns) for the systems con-
sidered.

In addition to examining the effect of Nrxns, we also want to compare reac-
tion systems with the same Nrxns. Early work in information theory by Shannon
[14] led to widespread use of information or Shannon entropy as a measure of
complexity

S = −
∑

i

Pi · ln(Pi), (9)

where S is a measure of the degree of randomness for the probability distribu-
tion, P. Because complex systems are neither completely ordered nor completely
random, it has been recognized that the relationship between Shannon entropy
and complexity includes a maximum at an intermediate entropy value [6,11,15].

For the purposes of this study, a Shannon entropy pertaining to chemi-
cal transformation may be calculated from the set of probabilities describing the
likelihood that a randomly selected molecule will undergo a particular trans-
formation, or follow a particular pathway, during the course of reaction. These
pathway probabilities were calculated, as shown in equations (10)–(12), by divid-
ing the limit of the concentration of the ith product as time approaches infinity
by the total amount of material in the system (A0).
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Pi = ki

A0 · √
b2 − 4 · a · c

· ln

(
A0 · b + 2 · c + A0 · √

b2 − 4 · a · c

A0 · b + 2 · c − A0 · √
b2 − 4 · a · c

)
, mi = 0,

(10)

Pi = ki

A0 · 2 · a



 ln
(

A0·b+c+A2
0·a

c

)

− b√
b2−4·a·c · ln

(
A0·b+2·c+A0·

√
b2−4·a·c

A0·b+2·c−A0·
√

b2−4·a·c

)



 , mi = 1, (11)

Pi = ki

A0 · 2 · a2



A0 · 2 · a − b · ln
(

A0·b+c+A2
0·a

c

)

+ b2−2·a·c√
b2−4·a·c · ln

(
A0·b+2·c+A0·

√
b2−4·a·c

A0·b+2·c−A0·
√

b2−4·a·c

)



 , mi = 2. (12)

Application of equation (9) to the pathway probabilities (equations (10)–(12))
yields a pathway entropy that we denote as Spthwy. For a fixed Nrxns, Spthwy is
a measure of the uniformity in the pathway probability distribution. A perfectly
uniform pathway probability distribution yields the maximum Spthwy, ln(Nrxns). A
distribution in which a pathway probability, Pi , equals one (and all others equal
zero) yields Spthwy = 0. In all cases considered here, Spthwy is close to the maxi-
mum value, ln(Nrxns), causing the relationship between complexity and Spthwy to
be approximately linear with negative slope. Since we are concerned only with
relative complexity, we may use Spthwy as our measure, noting that reaction sys-
tems with larger Spthwy values are less complex.

2.4. Metric for apparent order of reaction

Many procedures have been described for determination of the apparent
order of a reaction from experimental data, and their relative strengths and
weaknesses are frequently discussed in textbooks of chemical kinetics. The most
intuitive and widely used approach involves plotting transformed time series
data and examining the plot for linearity. In this study, we start by using this
approach to provide a qualitative but direct indication of reaction order. Since
we are interested in examining for behavior that appears to be first-order, we
used logarithmically transformed concentration versus time plots.

It also proved useful to have a quantitative measure of apparent order. To
this end, we fit the solution to equation (13) to simulated data generated by eval-
uating equation (8) at 1000 time points, evenly spaced between t = 0 and the
time required to reach the three half-lives concentration.

dA

dt
= −k · AM. (13)
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Fitting was performed by Chi-square minimization using the Levenberg–Marqu-
ardt method [16] with both k and M as fitting parameters. M, then, is a quan-
titative measure of apparent reaction order.

We used three half-lives as the endpoint for these calculations, as well as for
the normalization of rate constants (see above). This value was chosen to provide
enough extent of reaction to reveal deviations from first order behavior on a log
concentration versus time plot [17] while preserving enough resolution of the ini-
tial rate behavior to be consistent with the way many experimental protocols are
performed.

3. Results

3.1. Convergence with increasing Nrxns

Ensembles of 50 similar rate laws were generated for Nrxns = 1, 5, 20, and
50 with a uniform distribution on the reaction order (P(mi = 0) = P(mi = 1) =
P(mi = 2) = 1/3) and a normal distribution (µ = 1, σ = 0.3) on the raw rate
parameter, ξ . The resulting disappearance behavior is depicted in figure 1 on a
semi-log concentration versus time plot. Recall that (in this type of plot) purely
second-order behavior is a curve with positive concavity, purely first-order behav-
ior is a straight line, and purely zero-order behavior is a curve with negative con-
cavity.

The Nrxns = 1 ensemble (figure 1(a)) exhibits all three integer-order possibil-
ities in approximately equal proportions. With increasing Nrxns (figures 1(b)–(d)),
the likelihood of integer order behavior becomes smaller and the ensemble mem-
bers tend toward a limiting case (indicated by the dashed line in figure 1) that
is close to first-order. Behavior that appears to be first-order is possible for any
Nrxns while behavior that appears zero-order or second-order becomes increas-
ingly improbable as Nrxns increases.

The limiting case, shown as a dashed line in figure 1, is described by a rate
law of the form of equation (4). As Nrxns becomes large, equations (5–7) become
infinite series which converge to the following:

alim = lim
Nrxns→∞

a = P(mi = 2) · 1
A0

· 7
ln(8)

, (14)

blim = lim
Nrxns→∞

b = P(mi = 1), (15)

clim = lim
Nrxns→∞

c = P(mi = 0) · A0 · 7
8 · ln(8)

. (16)

On a semi-log plot, the limit exhibits a slight “S” shape; concave up a high con-
centrations and concave down at low concentrations. The reason for this curva-
ture and its magnitude will be examined later.
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Figure 1. Disappearance curves for ensembles (ensemble size = 50) with Nrxns = (a) 1, (b) 5, (c) 20,
and (d) 50. Rate constants and reaction orders selected stochastically. The limiting disappearance

curve for Nrxns → ∞ is marked by the dashed line in each plot.

The behavior exhibited in figure 1 may be further examined by plotting the
apparent reaction order, M, (as defined by equation (13)) against Nrxns. This is
shown in figure 2 for ensembles of reactions generated in the same manner as
those shown in figure 1 but with the ensemble size increased to 100. Each point
represents a particular M for a member of an ensemble with the number of reac-
tions indicated on the abscissa. As is the case for Nrxns = 1, some points may
lie exactly on top of each other even if the corresponding disappearance curves
do not. The average order and the average ± one standard deviation for each
Nrxns are plotted as solid lines. As Nrxns increases, the average order approaches a
limiting value and the standard deviation approaches zero. Although the limiting
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Figure 2. Apparent order calculated for statistically generated ensembles (ensemble size = 100) with
Nrxns varying from 1 to 50. Solid lines denote the average order and standard deviation about the

average for each ensemble. The limiting apparent order is shown by the dashed line.

apparent order (= 1.19) is somewhat greater than one, a first-order model may
be fit to such a limiting disappearance curve. We calculated the average value
of the absolute residuals for such a fit to be 0.01A0 concentration units. This is
smaller than the random errors in most experimental studies.

To verify the interpretation given to figure 2, we can remove the distribu-
tion on ξ and examine every possible combination of reaction orders for a given
Nrxns. A combination of reaction orders is defined by the sequence, (n0, n1, n2),
where nx is the number of parallel reactions of order x. All possible combina-
tions corresponding to a single Nrxns may be found by taking all permutations
of (n0, n1, n2) under the condition n0 + n1 + n2 = Nrxns. The number of permu-
tations is given by the combinatorial expression.

CR(3, NRxns) = (1 + Nrxns) · (2 + Nrxns)

2
. (17)

Here, all permutations are not equally probable. The weighting of (n0, n1, n2) is
given by
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Figure 3. Apparent order of all possible combinations of zero, first, and second-order reactions for
Nrxns from 1 to 50. The point size indicates the weight of the corresponding permutation relative to
the other permutations for the same Nrxns. Average and standard deviation curves are shown (as in
Figure 2) and represent the theoretical limit of such lines for infinitely large, statistically generated

ensembles.

p(n0, n1, n2) = [p(mi = 0)]n0 · [p(mi = 1)]n1 · [p(mi = 2)]n2 · Nrxns!
n0! · n1! · n2!

. (18)

Figure 3 shows the results of this analysis, in the same format as figure 2 (M ver-
sus Nrxns). Larger points reflect greater relative weight (as defined by equation
(18)). As Nrxns increases, the number of permutations increases and the proba-
bility density becomes increasingly localized in the region of the limiting order.
As Nrxns approaches infinity, the number of permutations approaches infinity and
the sum of the weights for permutations with apparent order equal to 1.19 (the
limiting order) approaches one. The average apparent order and the average ±
one standard deviation curves plotted in figure 3 represent the theoretical limit
(as the ensemble size approaches infinity) of the behavior that is approximated
in figure 2.

3.2. Behavior of the limiting case

Equations (14)–(16) and (18) indicate that the limiting apparent order
(dashed line in figures 2 and 3) is a function of the reaction order probability
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Figure 4. Contours of the limiting apparent order in the space of the probabilities used in selecting
reaction orders. Purely second-order behavior is represented by point (0,1), purely first-order behav-
ior by point (0,0), and purely zeroth-order behavior by point (1,0). The case considered in Figures

1–3 is marked with an “x”.

distribution. We have represented this functional dependence in figure 4 by
plotting contours of constant limiting apparent order in the space of zero-
order and second-order probabilities. In this figure, the first-order probabil-
ity is implied by the values of the zero-order and second-order probabilities.
Each corner of the triangle represents a case where all reactions have the
same order. The center of the triangle (indicated by an “x”) is the case that
we considered in figures 1–3. We note that the area between the contours
for M = 0.8 and M = 1.2 is much larger than either of the areas above the
M = 1.8 contour or below the M = 0.2 contour. This shows that many reaction
order distributions will ultimately yield apparent behavior that is near to first-
order.

The fitting routine used to generate figure 4 produces fits with chi-square
equal to zero only for the reaction systems represented by the corners of figure
4. This is due to the tendency of the log-transformed disappearance curves to
exhibit an “S” shape as noted in the discussion of figure 1. The contribution to
the concavity of the log-transformed disappearance curve due to second-order
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processes is positive and increases with concentration. First-order processes do
not contribute to the concavity of the log-transformed disappearance curve and
zero-order contributions are negative and increases with concentration (decreases
in magnitude). As a result, the concavity of the log-transformed limiting case is
initially dominated by second-order reactions and, therefore, positive, but finally
dominated by zero-order reactions and, therefore, negative.

The log-transformed concavity is most pronounced when few of the pro-
cesses are first-order (i.e. the P(mi = 0) + P(mi = 2) = 1 line in figure 4).
For the worst case along the M = 1 contour, the average of the absolute resid-
uals between the limiting disappearance curve and the first-order fit is equal to
0.002A0 concentration units. This value is significantly smaller than the error in
a typical chemical kinetics experiment. Analysis of other cases along the M = 1
contour (not shown) indicates that this value decreases to zero at P(mi = 1) = 1
slightly slower than linearly.

Figure 5. Scatter plot of pathway entropy (Spthwy) versus apparent order (M) for and ensemble
of 10,000 statistically generated parallel reactions with Nrxns = 5. Smaller Spthwy (smaller val-
ues towards the top) indicates larger complexity. The solid line denotes the average Spthwy for all

ensemble members in the noted order range.
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3.3. Convergence with decreasing Spthwy

In the preceding discussion we have treated Nrxns as the variable controlling
the tendency toward a central limit. It may also be instructive to look for cen-
tralizing tendencies within an ensemble of fixed Nrxns. To this end, we have cal-
culated Spthwy according to equations (9)–(12) for each member of an Nrxns = 5
ensemble generated in the same manner as those depicted in figures 1 and 2, but
with the ensemble size increased to 10,000. Figure 5 shows the results of this cal-
culation plotted against the apparent order, M. It is visually apparent from the
distribution of the clusters of points that the average pathway entropy of ensem-
ble members at or near the limiting order (for these conditions, 1.19) is larger
than Spthwy for the ensemble members on either side. This observation is rein-
forced by the maximum in the arithmetic mean of Spthwy (represented in figure
5 by the white line), which was calculated for the ranges of order indicated with
vertical dashed lines in the figure.

The ensemble members with an approximately equal number of each
reaction type tend to yield apparent order close to one. Such ensemble mem-
bers also have, on average, smaller pathway entropy. This is because, when
multiple reaction types are present, the pathways with lower reaction order
tend to convert the most material over the full course of the reaction, yield-
ing a less ordered distribution of material amongst the individual reactions.
Somewhat less ordered pathway probability distributions may arise for any
combination of reaction orders (due to the influence of distributed rate con-
stants), but this is more likely for systems with an equal number of each reac-
tion type (due to the additional influence of distributed reaction orders). As
complexity increases, therefore, the likelihood that a system will exhibit first-
order behavior also increases even if the system does not have a large Nrxns.
Convergence toward a central limit with two independent measures of com-
plexity, Nrxns and Spthwy, indicates that this result may apply to more compli-
cated reaction systems that involve, for example, reversible steps and/or multiple
reactants.
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